Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
Virus Genes ; 60(2): 173-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355991

RESUMO

Bovine leukemia virus is a retrovirus that causes enzootic bovine leukosis and is associated with global economic losses in the livestock industry. The aim of this study was to investigate the genotype determination of BLVs from cattle housed in 6 different farms in Türkiye and the characterization of their LTR and pX (tax, rex, R3, and G4 gene) regions. For this purpose, blood samples from 48 cattle infected with BLV were used. The phylogenetic analysis based on the env gene sequences revealed that all BLVs were clustered in genotype 1 (G1), and the sequences of the LTR (n = 48) and the pX region (n = 33) of BLVs were obtained. Also, analysis of these nucleic acid and amino acid sequences allowed assessments similar to those reported in earlier studies to be relevant to transactivation and pathogenesis. This study reports the molecular analysis of the LTR and pX region of BLVs in Türkiye for the first time.


Assuntos
Genes env , Vírus da Leucemia Bovina , Animais , Bovinos , Genes env/genética , Vírus da Leucemia Bovina/genética , Filogenia , Turquia , Sequência de Aminoácidos
2.
Arch Virol ; 169(3): 47, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366081

RESUMO

Bovine leukemia virus (BLV) is a member of the family Retroviridae that causes enzootic bovine leukemia (EBL). However, the association between BLV infection and EBL development remains unclear. In this study, we identified a BLV/SMAD3 chimeric provirus within CC2D2A intron 30 in monoclonal expanded malignant cells from a cow with EBL. The chimeric provirus harbored a spliced SMAD3 sequence composed of exons 3-9, encoding the short isoform protein, and the BLV-SMAD3 chimeric transcript was detectable in cattle with EBL. This is the first report of a BLV chimeric provirus that might be involved in EBL tumorigenesis.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Provírus/genética , Vírus da Leucemia Bovina/genética
3.
Sci Rep ; 13(1): 22356, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102157

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), which has been reported worldwide. The expression of viral structural proteins: surface glycoprotein (gp51) and three core proteins - p15 (matrix), p24 (capsid), and p12 (nucleocapsid) induce a strong humoral and cellular immune response at first step of infection. CD4+ T-cell activation is generally induced by bovine leukocyte antigen (BoLA) region- positive antigen-presenting cells (APC) after processing of an exogenous viral antigen. Limited data are available on the BLV epitopes from the core proteins recognized by CD4+ T-cells. Thus, immunoinformatic analysis of Gag sequences obtained from 125 BLV isolates from Poland, Canada, Pakistan, Kazakhstan, Moldova and United States was performed to identify the presence of BoLA-DRB3 restricted CD4+ T-cell epitopes. The 379 15-mer overlapping peptides spanning the entire Gag sequence were run in BoLA-DRB3 allele-binding regions using a BoLA-DRB- peptide binding affinity prediction algorithm. The analysis identified 22 CD4+ T-cell peptide epitopes of variable length ranging from 17 to 22 amino acids. The predicted epitopes interacted with 73 different BoLA-DRB3 alleles found in BLV-infected cattle. Importantly, two epitopes were found to be linked with high proviral load in PBMC. A majority of dominant and subdominant epitopes showed high conservation across different viral strains, and therefore could be attractive targets for vaccine development.


Assuntos
Linfócitos T CD4-Positivos , Vírus da Leucemia Bovina , Animais , Bovinos , Epitopos de Linfócito T/genética , Vírus da Leucemia Bovina/genética , Produtos do Gene gag/genética , Leucócitos Mononucleares , Antígenos HLA-DR , Peptídeos
4.
J Vet Med Sci ; 85(12): 1291-1295, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37914277

RESUMO

A 23-month-old Holstein-Friesian heifer presented with inactivity and diarrhea. On physical examination, no enlargement of superficial lymph nodes was observed. Hematological examination revealed lymphocytosis. The bovine leukemia virus (BLV) proviral load was 2,122 copies/10 ng DNA, and BLV was classified as Group C based on whole genome phylogenetic analysis. Monoclonal proliferation of B-cells and monoclonal integration of the BLV provirus in the bovine genome were detected by a clonality test of B-cells and inverse PCR, respectively. Although lymph nodes were not swollen at necropsy, histopathological examination revealed neoplastic lymphocyte proliferation in lymph nodes, which were immune positive for CD5 and CD20, and negative for CD3. The heifer was diagnosed with EBL caused by BLV classified as Group C.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Vírus da Leucemia Bovina/genética , Filogenia , Provírus/genética , Linfócitos B
5.
Vet Ital ; 59(1): 83-92, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37994640

RESUMO

The retrovirus bovine leukemia virus (BLV) might produce abnormal immune function, associated with susceptibility to developing other infectious diseases, including mastitis. This study aimed to determine the proviral load and cytokines gene expression in peripheral blood mononuclear cells (PMBC) and milk somatic cells (SC) in BLV-infected and non-infected cattle. Of 27 BLV-infected cows in PBMC, 17 (62.96%) had a high proviral load (HPL), and 10 (37.04%) had a low proviral load (LPL). All SC samples had low proviral load (LPL-SC). Higher IFN-γ and IL-10 expression, and lower IL-12 and IL-6 expression, were found in PBMC from BLV-infected compared to BLV non-infected cattle. Moreover, higher IFN-γ, IL-12, and IL-6 expression, and lower IL-10 expression were observed in cattle with LPL-PBMC compared to HPL-PBMC. In milk samples, lower IFN-γ and higher IL-12 mRNA expression were observed in LPL-SC compared to BLV non-infected cattle in SC. IL-10 and IL-6 expression mRNA was significantly lower in LPL-SC than in SC from BLV non-infected cattle. This study shows that milk SC maintains lower proviral load levels than PBMC. This first report on Th1 and Th2 cytokines expression levels in SC may be relevant to future control strategies for BLV infection, mastitis, and udder health management.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Mastite , Feminino , Bovinos , Animais , Citocinas/genética , Leucócitos Mononucleares , Interleucina-10 , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/genética , Provírus/genética , Leite , Interleucina-6 , Interleucina-12 , RNA Mensageiro , Mastite/veterinária
6.
BMC Vet Res ; 19(1): 185, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784057

RESUMO

BACKGROUND: The Kumamoto strain of Japanese Brown (JBRK) cattle is a sub-breed of Wagyu and has a different genetic background than that of Japanese Black (JB) cattle. Bovine leukemia virus (BLV) is the pathogen causing enzootic bovine leukosis (EBL), the predominant type of bovine leukosis (BL). EBL is one of the most common bovine infectious diseases in dairy countries, including Japan. Some host genetic factors, including the bovine leukocyte antigen (BoLA)-DRB3 gene, have been associated with the proviral load (PVL) of BLV and/or onset of EBL. Here, we determined the number of BL cases by analyzing prefectural case records in detail. We measured the PVL of BLV-infected JBRK cattle and compared it with that obtained for other major breeds, JB and Holstein-Friesian (HF) cattle. Finally, the relationship between PVL levels and BoLA-DRB3 haplotypes was investigated in BLV-infected JBRK cattle. RESULTS: We determined the number of BL cases recorded over the past ten years in Kumamoto Prefecture by cattle breed. A limited number of BL cases was observed in JBRK cattle. The proportion of BL cases in the JBRK was lower than that in JB and HF. The PVL was significantly lower in BLV-infected JBRK cattle than that in the JB and HF breeds. Finally, in BLV-infected JBRK cattle, the PVL was not significantly affected by BoLA-DRB3 alleles and haplotypes. BoLA-DRB3 allelic frequency did not differ between BLV-infected JBRK cattle with low PVL and high PVL. CONCLUSIONS: To our knowledge, this is the first report showing that BL occurred less in the JBRK population of Kumamoto Prefecture. After BLV-infection, the PVL was significantly lower in JBRK cattle than that in JB and HF breeds. The genetic factors implicated in maintaining a low PVL have yet to be elucidated, but the BoLA-DRB3 haplotypes are likely not involved.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Bovinos , Animais , Vírus da Leucemia Bovina/genética , Antígenos de Histocompatibilidade Classe II/genética , Provírus/genética , Leucose Enzoótica Bovina/genética , Frequência do Gene
7.
Breast Cancer Res Treat ; 202(2): 325-334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517027

RESUMO

PURPOSE: The bovine leukemia virus (BLV) is a deltaretrovirus that causes malignant lymphoma and lymphosarcomas in cattle globally and has high prevalence among large scale U.S. dairy herds. Associations between presence of BLV DNA in human mammary tissue and human breast cancer incidence have been reported. We sought to estimate the prevalence of BLV DNA in breast cancer tissue samples in a rural state with an active dairy industry. METHODS: We purified genomic DNA from 56 fresh-frozen breast cancer tissue samples (51 tumor samples, 5 samples representing adjacent normal breast tissue) banked between 2016 and 2019. Using nested PCR assays, multiple BLV tax sequence primers and primers for the long terminal repeat (LTR) were used to detect BLV DNA in tissue samples and known positive control samples, including the permanently infected fetal lamb kidney cell line (FLK-BLV) and blood from BLV positive cattle. RESULTS: The median age of patients from which samples were obtained at the time of treatment was 60 (40-93) and all were female. Ninety percent of patients had invasive ductal carcinoma. The majority were poorly differentiated (60%). On PCR assay, none of the tumor samples tested positive for BLV DNA, despite having consistent signals in positive controls. CONCLUSION: We did not find BLV DNA in fresh-frozen breast cancer tumors from patients presenting to a hospital in Vermont. Our findings suggest a low prevalence of BLV in our patient population and a need to reevaluate the association between BLV and human breast cancer.


Assuntos
Neoplasias da Mama , Vírus da Leucemia Bovina , Neoplasias Mamárias Animais , Bovinos , Humanos , Feminino , Animais , Ovinos/genética , Masculino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Vírus da Leucemia Bovina/genética , DNA Viral/genética , Mama
8.
Retrovirology ; 20(1): 11, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268923

RESUMO

Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , MicroRNAs , Animais , Bovinos , Humanos , Fatores de Transcrição/genética , Vírus da Leucemia Bovina/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Epigênese Genética , Leucose Enzoótica Bovina/genética
9.
PLoS One ; 18(2): e0281317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730262

RESUMO

Bovine leukemia virus (BLV) is a retrovirus that causes malignant B-cell lymphoma in up to ten-percent of infected cattle. To date, the mechanisms of BLV linked to malignant transformation remain elusive. Although BLV-encoded miRNAs have been associated with the regulation of different genes involved in oncogenic pathways, this association has not been evaluated in cattle naturally infected with BLV. The objective of this study was to determine the relative expression of BLV-encoded miRNA blv-miR-b4-3p, the host analogous miRNA bo-miR-29a and a couple of potential target mRNAs (HBP-1 and PXDN, with anti-tumorigenic function in B-cells), in cattle naturally infected with BLV compared to uninfected animals (control group). We observed that PXDN was significantly downregulated in BLV-infected cattle (P = 0.03). Considering the similar expression of endogenous bo-miR-29a in both animal groups, the downregulation of PXDN in BLV-naturally infected cattle could be linked to blv-miR-b4-3p expression in these animals. Knowing that PXDN is involved in anti-tumoral pathways in B-cells, the results presented here suggest that blv-miR-b4-3p might be involved in BLV tumorigenesis during natural infection with BLV in cattle.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Linfoma de Células B , MicroRNAs , Neoplasias , Animais , Bovinos , MicroRNAs/genética , Vírus da Leucemia Bovina/genética , Linfócitos B , Leucose Enzoótica Bovina/genética
10.
J Virol Methods ; 315: 114706, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849053

RESUMO

Bovine leukemia virus (BLV) is the causative agent of a B-cell tumor called enzootic bovine leukosis. Preventing BLV spreading is required to reduce economic loss related to BLV infection of livestock. To quantify proviral load (PVL) more easily and rapidly, we developed a quantification system of PVL using droplet digital PCR (ddPCR). This method uses a multiplex TaqMan assay of the BLV provirus and housekeeping gene RPP30 for the quantification of BLV in BLV-infected cells. Furthermore, we combined ddPCR with DNA purification-free sample preparation (unpurified genomic DNA). The percentage of BLV-infected cells based on unpurified genomic DNA was highly correlated with that based on purified genomic DNA (correlation coefficient: 0.906). Thus, this new technique is a suitable method to quantify PVL of BLV-infected cattle in a large sample number.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Provírus/genética , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/diagnóstico , Reação em Cadeia da Polimerase/métodos , DNA , Genômica
11.
mSphere ; 8(1): e0049322, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36625728

RESUMO

In the transmission control of chronic and untreatable livestock diseases such as bovine leukemia virus (BLV) infection, the removal of viral superspreaders is a fundamental approach. On the other hand, selective breeding of cattle with BLV-resistant capacity is also critical for reducing the viral damage to productivity by keeping infected cattle. To provide a way of measuring BLV proviral load (PVL) and identifying susceptible/resistant cattle simply and rapidly, we developed a fourplex droplet digital PCR method targeting the BLV pol gene, BLV-susceptible bovine major histocompatibility complex (BoLA)-DRB3*016:01 allele, resistant DRB3*009:02 allele, and housekeeping RPP30 gene (IPATS-BLV). IPATS-BLV successfully measured the percentage of BLV-infected cells and determined allele types precisely. Furthermore, it discriminated homozygous from heterozygous carriers. Using this method to determine the impact of carrying these alleles on the BLV PVL, we found DRB3*009:02-carrying cattle could suppress the PVL to a low or undetectable level, even with the presence of a susceptible heterozygous allele. Although the population of DRB3*016:01-carrying cattle showed significantly higher PVLs compared with cattle carrying other alleles, their individual PVLs were highly variable. Because of the simplicity and speed of this single-well assay, our method has the potential of being a suitable platform for the combined diagnosis of pathogen level and host biomarkers in other infectious diseases satisfying the two following characteristics of disease outcomes: (i) pathogen level acts as a critical maker of disease progression; and (ii) impactful disease-related host genetic biomarkers are already identified. IMPORTANCE While pathogen-level quantification is an important diagnostic of disease severity and transmissibility, disease-related host biomarkers are also useful in predicting outcomes in infectious diseases. In this study, we demonstrate that combined proviral load (PVL) and host biomarker diagnostics can be used to detect bovine leukemia virus (BLV) infection, which has a negative economic impact on the cattle industry. We developed a fourplex droplet digital PCR assay for PVL of BLV and susceptible and resistant host genes named IPATS-BLV. IPATS-BLV has inherent merits in measuring PVL and identifying susceptible and resistant cattle with superior simplicity and speed because of a single-well assay. Our new laboratory technique contributes to strengthening risk-based herd management used to control within-herd BLV transmission. Furthermore, this assay design potentially improves the diagnostics of other infectious diseases by combining the pathogen level and disease-related host genetic biomarker to predict disease outcomes.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Reação em Cadeia da Polimerase , Animais , Bovinos , Alelos , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/genética , Suscetibilidade a Doenças , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/genética , Marcadores Genéticos , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/genética , Reação em Cadeia da Polimerase/métodos
12.
PLoS One ; 18(1): e0279756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36696379

RESUMO

Enzootic bovine leukosis (EBL) is one of bovine neoplasms caused by bovine leukemia virus (BLV). Although EBL is typically observed in cattle over 3 years old, several cases of EBL onset in cattle under 3 years old have been reported in Japan. The mechanism for EBL onset in young cattle remains unclear. Although genetic variation of BLV is limited, the variations could affect viral properties relating to BLV pathogenesis. The purpose of this study was to clarify relationship between early onset of EBL and BLV groups. Moreover, we also aimed to characterize BLV that cause early onset of EBL. Whole genome sequences of BLV in 72 EBL cattle under 3 years old and 50 EBL cattle over 3 years old were identified. Phylogenetic analysis showed that BLV was divided into 4 groups (A, B-1, B-2 and Other). The BLV from EBL cattle under 3 years old were mainly classified as group A and B-1, while those from EBL cattle over 3 years old were mainly included in group B-2. Common sequence of group A and B-1 was compared with those of group B-2. Specific sequences in LTRs, gag-pro-pol, env and tax gene regions were identified in these groups. Amino acid substitutions of Pro and Tax protein were predicted in those nucleotide sequences. Those genetic variations might contribute to the early onset of EBL.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Filogenia , Vírus da Leucemia Bovina/genética , Japão
13.
J Virol ; 97(1): e0154222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533951

RESUMO

Bovine leukemia virus (BLV) infection results in polyclonal expansion of infected B lymphocytes, and ~5% of infected cattle develop enzootic bovine leukosis (EBL). Since BLV is a retrovirus, each individual clone can be identified by using viral integration sites. To investigate the distribution of tumor cells in EBL cattle, we performed viral integration site analysis by using a viral DNA capture-sequencing method. We found that the same tumor clones existed in peripheral blood, with a dominance similar to that in lymphoma tissue. Additionally, we observed that multiple tumor tissues from different sites harbored the identical clones, indicating that tumor cells can circulate and distribute systematically in EBL cattle. To investigate clonal expansion of BLV-infected cells during a long latent period, we collected peripheral blood samples from asymptomatic cattle every 2 years, among which several cattle developed EBL. We found that no detectable EBL clone existed before the diagnosis of EBL in some cases; in the other cases, clones that were later detected as malignant clones at the EBL stage were present several months or even years before the disease onset. To establish a feasible clonality-based method for the diagnosis of EBL, we simplified a quick and cost-effective method, namely, rapid amplification of integration sites for BLV infection (BLV-RAIS). We found that the clonality values (Cvs) were well correlated between the BLV-RAIS and viral DNA capture-sequencing methods. Furthermore, receiver operating characteristic (ROC) curve analysis identified an optimal Cv cutoff value of 0.4 for EBL diagnosis, with excellent diagnostic sensitivity (94%) and specificity (100%). These results indicated that the RAIS method efficiently and reliably detected expanded clones not only in lymphoma tissue but also in peripheral blood. Overall, our findings elucidated the clonal dynamics of BLV- infected cells during EBL development. In addition, Cvs of BLV-infected cells in blood can be used to establish a valid and noninvasive diagnostic test for potential EBL onset. IMPORTANCE Although BLV has been eradicated in some European countries, BLV is still endemic in other countries, including Japan and the United States. EBL causes huge economic damage to the cattle industry. However, there are no effective drugs or vaccines to control BLV infection and related diseases. The strategy of eradication of infected cattle is not practical due to the high endemicity of BLV. Furthermore, how BLV-infected B cell clones proliferate during oncogenesis and their distribution in EBL cattle have yet to be elucidated. Here, we provided evidence that tumor cells are circulating in the blood of diseased cattle. Thus, the Cv of virus-infected cells in blood is useful information for the evaluation of the disease status. The BLV-RAIS method provides quantitative and accurate clonality information and therefore is a promising method for the diagnosis of EBL.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/patologia , DNA Viral/genética , Linfócitos B/patologia , Vírus da Leucemia Bovina/genética , Células Clonais/patologia
14.
J Vet Med Sci ; 85(1): 111-116, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36450501

RESUMO

Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leucosis. Our previous study showed the BLV existence in cattle kept in the Red River Delta Region of Vietnam. However, no positive samples were identified in beef cattle. Besides, information related to the BLV circulation in the remained parts of Vietnam is limited. Therefore, we tested the existence of BLV in 48 beef cattle kept in the Central Coast Regions. Nested PCR targeting the BLV-env-gp51 confirmed the prevalence of 14.6% in investigated regions. Phylogenetic analysis suggested the co-existence of genotypes 1 and 10. The close relationship between strains found in Vietnam, Thailand, Myanmar, and China was revealed suggesting the possibility of BLV transmission through the movement of live cattle.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Bovinos , Animais , Filogenia , Vírus da Leucemia Bovina/genética , Genótipo , Vietnã/epidemiologia , Leucose Enzoótica Bovina/epidemiologia , Doenças dos Bovinos/epidemiologia
15.
J Virol Methods ; 311: 114644, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332713

RESUMO

Bovine leukemia virus (BLV) is an enveloped virus, found worldwide that can infect cattle and induce many subclinical symptoms and malignant tumors. BLV infection causes severe economic losses in the cattle industry. The identification of BLV-infected cattle for segregation or elimination would be the most effective way to halt the spread of BLV infection on farms, owing to the lack of effective treatments and vaccines. Therefore, antibody detection against the viral glycoprotein gp51 is an effective method for diagnosing BLV-infected animals. In this study, ten different subregions of gp51 containing a common B cell epitope are vital for developing antigens as epitope-driven vaccine design and immunological assays. Such antigens were produced in Escherichia coli expression system to react with antibodies in the serum from BLV-infected cattle and compete for antigenicity. Recombinant His-gp5156-110 and gp5133-301(full) had the same sensitivity in BLV-positive sera, indicating that antibodies responded to the limited subregion of viral gp51, a common B cell epitope. This finding provides significant information for antigen selection in BLV to use in antibody detection assays. Further studies are needed to evaluate the antigenicity of His-gp5156-110 and gp5133-301(full) as antigens for antibody detection assays using a larger number of bovine serum samples.


Assuntos
Infecções por Deltaretrovirus , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Vírus da Leucemia Bovina/genética , Proteínas do Envelope Viral , Epitopos de Linfócito B/metabolismo , Anticorpos Antivirais , Leucose Enzoótica Bovina/diagnóstico
16.
Retrovirology ; 19(1): 24, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329491

RESUMO

Bovine leukemia virus (BLV) infects cattle, integrates into host DNA as a provirus, and induces malignant B-cell lymphoma. Previous studies have addressed the impact of proviral integration of BLV on BLV-induced leukemogenesis. However, no studies have monitored sequential changes in integration sites in which naturally infected BLV individuals progress from the premalignant stage to the terminal disease. Here, we collected blood samples from a single, naturally infected Holstein cow at three disease progression stages (Stage I: polyclonal stage, Stage II: polyclonal toward oligoclonal stage, Stage III: oligoclonal stage) and successfully visualized the kinetics of clonal expansion of cells carrying BLV integration sites using our BLV proviral DNA-capture sequencing method. Although 24 integration sites were detected in Stages I and II, 92% of these sites experienced massive depletion in Stage III. Of these sites, 46%, 37%, and 17% were located within introns of Refseq genes, intergenic regions, and repetitive sequences, respectively. At Stage III cattle with lymphoma, only two integration sites were generated de novo in the intergenic region of Chr1, and the intron of the CHEK2 gene on Chr17 was significantly increased. Our results are the first to demonstrate clonal expansion after the massive depletion of cells carrying BLV integration sites in a naturally infected cow.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Vírus da Leucemia Bovina/genética , Provírus/genética , Integração Viral , Progressão da Doença
17.
Microbiol Spectr ; 10(6): e0259522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36227090

RESUMO

Bovine leukemia virus (BLV), a retrovirus, infects B cells of ruminants and is integrated into the host genome as a provirus for lifelong infection. After a long latent period, 1% to 5% of BLV-infected cattle develop aggressive lymphoma, enzootic bovine leukosis (EBL). Since the clonal expansion of BLV-infected cells is essential for the development of EBL, the clonality of proviral integration sites could be a molecular marker for diagnosis and early prediction of EBL. Recently, we developed Rapid Amplification of the Integration Site without Interference by Genomic DNA Contamination (RAISING) and an analysis software of clonality value (CLOVA) to analyze the clonality of transgene-integrated cells. RAISING-CLOVA is capable of assessing the risk of adult T-cell leukemia/lymphoma development in human T-cell leukemia virus-I-infected individuals through the clonality analysis of proviral integration sites. Thus, we herein examined the performance of RAISING-CLOVA for the clonality analysis of BLV-infected cells and conducted a comprehensive clonality analysis by RAISING-CLOVA in EBL and non-EBL cattle. RAISING-CLOVA targeting BLV was a highly accurate and reproducible method for measuring the clonality value. The comprehensive clonality analysis successfully distinguished EBL from non-EBL specimens with high sensitivity and specificity. A longitudinal clonality analysis in BLV-infected sheep, an experimental model of lymphoma, also confirmed the effectiveness of RAISING-CLOVA for early detection of EBL development. Therefore, our study emphasizes the usefulness of RAISING-CLOVA as a routine clinical test for monitoring virus-related cancers. IMPORTANCE Bovine leukemia virus (BLV) infection causes aggressive B-cell lymphoma in cattle and sheep. The virus has spread to farms around the world, causing significant economic damage to the livestock industry. Thus, the identification of high-risk asymptomatic cattle before they develop lymphoma can be effective in reducing the economic damage. Clonal expansion of BLV-infected cells is a promising marker for the development of lymphoma. Recently, we have developed a high-throughput method to amplify random integration sites of transgenes in host genomes and analyze their clonality, named as RAISING-CLOVA. As a new application of our technology, in this study, we demonstrate the value of the RAISING-CLOVA method for the diagnosis and early prediction of lymphoma development by BLV infection in cattle. RAISING-CLOVA is a reliable technology for monitoring the clonality of BLV-infected cells and would contribute to reduce the economic losses by EBL development.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Linfoma , Bovinos , Humanos , Animais , Ovinos , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/diagnóstico , Provírus/genética , Integração Viral
18.
Viruses ; 14(9)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36146695

RESUMO

The bovine leukemia virus (BLV) and the human T-lymphothropic viruses (HTLVs) are members of the deltaretrovirus genus of Retroviridae family. An essential event of the retroviral life cycle is the processing of the polyproteins by the viral protease (PR); consequently, these enzymes became important therapeutic targets of the anti-retroviral drugs. As compared to human immunodeficiency viruses (HIVs), the deltaretroviruses have a different replication strategy, as they replicate predominantly in the DNA form, by forcing the infected cell to divide, unlike HIV-1, which replicates mainly by producing a vast number of progeny virions and by reinfection. Due to bypassing the error-prone reverse transcription step of replication, the PRs of deltaretroviruses did not undergo such extensive evolution as HIV PRs and remained more highly conserved. In this work, we studied the abilities of wild-type and modified BLV, HTLV (type 1, 2 and 3), and HIV-1 PRs (fused to an N-terminal MBP tag) for self-processing. We designed a cleavage site mutant MBP-fused BLV PR precursor as well, this recombinant enzyme was unable for self-proteolysis, the MBP fusion tag decreased its catalytic efficiency but showed an unusually low Ki for the IB-268 protease inhibitor. Our results show that the HTLV and BLV deltaretrovirus PRs exhibit lower mutation tolerance as compared to HIV-1 PR, and are less likely to retain their activity upon point mutations at various positions, indicating a higher flexibility of HIV-1 PR in tolerating mutations under selective pressure.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Vírus da Leucemia Bovina , Deltaretrovirus/genética , Endopeptidases/genética , Protease de HIV/genética , HIV-1/genética , Humanos , Vírus da Leucemia Bovina/genética , Mutação , Peptídeo Hidrolases/genética , Poliproteínas/genética , Inibidores de Proteases/farmacologia
19.
J Vet Med Sci ; 84(11): 1457-1460, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36171135

RESUMO

The bovine leukocyte antigen (BoLA) DRB3*009:02 allele is strongly associated with a low/undetectable bovine leukemia virus (BLV) proviral load. Understanding the status of cattle possessing DRB3*009:02 allele is key for BLV control by breeding. We performed a survey of DRB3*009:02-carrying cattle in two prefectures in Japan using a TaqMan assay developed previously. The allele was found in 3.8% (confidence interval (CI): 3.3-4.3) of 6020 Japanese Black female cattle. A prefecture-level difference was found: the allele was observed in 8.6% CI: 7.5-9.9) of 2242 cattle of the birth prefecture B in Kyushu/Okinawa region, and this percentage was significantly higher than those of prefecture C in Kyushu/Okinawa region (1.3% (CI: 0.4-3.4) of 319) and prefecture A in Chugoku region (0.9% (CI: 0.6-1.4) of 2741), respectively. Consideration on the difference in possession of DRB3*009:02 allele is needed to establish the more efficient control strategy of BLV infection in Japanese Black cattle.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Feminino , Bovinos , Animais , Vírus da Leucemia Bovina/genética , Alelos , Japão/epidemiologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos Virais/genética , Leucócitos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética
20.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142686

RESUMO

Enzootic bovine leukosis (EBL) is a B-cell lymphosarcoma caused by the bovine leukemia virus (BLV). Most BLV-infected cattle show no clinical signs and only some develop EBL. The pathogenesis of EBL remains unclear and there are no methods for predicting EBL before its onset. Previously, it was reported that miRNA profiles in milk small extracellular vesicles (sEVs) were affected in cattle in the late stage of BLV infection. It raised a possibility that miRNA profile in milk sEVs from EBL cattle could be also affected. To characterize the difference in milk of EBL cattle and healthy cattle, we examined the miRNA profiles in milk sEVs from four EBL and BLV-uninfected cattle each using microarray analysis. Among the detected miRNAs, three miRNAs-bta-miR-1246, hsa-miR-1290, and hsa-miR-424-5p-which were detectable using quantitative real-time PCR (qPCR) and are associated with cancers in humans-were selected as biomarker candidates for EBL. To evaluate the utility of these miRNAs as biomarkers for EBL, their levels were measured using milk that was freshly collected from 13 EBL and seven BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p, but not hsa-miR-1290, were detected using qPCR and their levels in milk sEVs from EBL cattle were significantly higher than those in BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p in sEVs may promote metastasis by targeting tumor suppressor genes, resulting in increased amounts in milk sEVs in EBL cattle. These results suggest that bta-miR-1246 and hsa-miR-424-5p levels in milk sEVs could serve as biomarkers for EBL.


Assuntos
Leucose Enzoótica Bovina , Vesículas Extracelulares , Vírus da Leucemia Bovina , MicroRNAs , Animais , Biomarcadores , Bovinos , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/genética , Vesículas Extracelulares/genética , Humanos , Vírus da Leucemia Bovina/genética , MicroRNAs/genética , Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...